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ABSTRACT 
The brief analysis the problems   of an elastic and a viscoelastic contact have been given.  The general solution of   

the dynamics of viscoelastic impact between a spherical body and a plane surface of semi-space at an arbitrary 

angle of attack has been examined in this paper.  Solutions to problems of the normal and the tangential 

displacement have been considered. The differential equations of the displacement (the movement) of the centre 

of mass of the body have been obtained and their approximate solutions have been found. Also, the boundaries of   

application of the obtained equations of displacement for the viscoelastic contact have been given. 

 

KEYWORDS: viscoelastic impact, parameters viscoelasticity, viscoelastic forces, dynamic modules, method 

specific forces, equivalent work, restitution, compression, the motion of rolling shear, movement, motion 

differential equations, the headway (the translational) motion under the deformation of direct shear. 

1. INTRODUCTION 
The mechanics of an elastic and a viscoelastic contact problems   between two smooth surfaces have been studied 

in the 19-th century by Herts [1] and Boussinesq [2], and then  later, for example, it was  examined   by many 

others researchers, such as: Bowden and Tabor [3]; Landau and Lifshits [4]; Mindlin [5];, Timoshenko and  

Goodier [6]; Archard [7];  Radok [8];  Goldsmith [9]; Hunter, [10]; Galin [11]; Lee [12]; Lee and Radok [13]; 

Graham [14];  Sneddon [15]; Greenwood and Williamson[16]; Ting [17];   Simon [18]; Johnson, Kendall and 

Roberts [19]; Derjaguin, Muller and Toporov [20]; Bush, Gibson and Thomas [21];  Moore [21,22];Maw, Barber 

and Fawcett [23]; Tabor [24]; Cundall   and Strack [25]; Jonas [26]; Padovan and Paramadilok [26]; Johnson [27]; 

Schafer,  Dippel   and Wolf [28]; Brilliantov, Spahn, Hertzsch, Poeschel [29]; Ramírez,  Poeschel, Brilliantov,  

Schwager [30];  Stronge [31]; Barber and  Ciavarella [32];Laursen [33]; Cheng, Xia, Scriven and Gerberich [34]; 

Bordbar and Hyppänen [35]; Schwager  and Poschel [36,37]; Becker, Schwager and Pöschel [38]; Carbone, 

Lorenz, Persson and Wohlers [39]; Persson [40]; Cummins, Thornton and Cleary [41];Popov [42, 43]; Heβ [44];  

Thornton   and  Yin [45]; Menga, Putignano, Carbone, and Demelio [46];Popov   and Heβ [47];   Lyashenko and 

Popov [48];  Goloshchapov [49, 50, 51];Mindlin and  Deresiewicz [52].According to all these researches, we can 

allocate several main types of frictional contact: 

 Elastic contact (in nature practically doesn't exist), when only the elastic forces work between the 

contacting surfaces. 

 Viscoelastic contact, when between the surfaces, which are in contact, the dissipative forces of viscosity 

(also named the forces of internal friction) begin to act as well. 

 The elastic-plastic contact, when forces of viscosity are considerable and the contacting surfaces pass 

into a plastic state. 

 Adhesive contact, when significant adhesive forces act between pure surfaces being in contact, for 

example under intensive sliding loading, when    films absorbed on the contacting surfaces are destroyed, 

or for example in process friction in a deep vacuum.  Thus, in a general case of impact we can neglect 

adhesive molecular forces and do not consider its influences here. 

But, as we know, in practice, the real contact between contacting surfaces usually is implemented as a combination 

of these four basic types of contact.  On the other hand, we can allocate three main types of contact of the relative 

displacement between the contacting surfaces, such as a slip, a rolling motion and an impact.  But indeed, as we 

will see soon,  the  impact   includes two independent tangential deformations, such as the  shear under a rolling 

motion ( the deformation of  rolling shear) and the deformation of  direct  headway  shear. 
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Let a spherical body, having the mass m and the radius R, and the translational velocity V0 relative to  the still 

semi-space, and the relative angular  velocity of rotation ωzi around  the moving centre of mass of a body in the 

plane X0Y ≡ 𝑋𝐴𝑌,  comes  into contact under   the angle of attack α to the surface of semi-space at the initial 

instant of the time t = 0,  as it is depicted in the Figure 1,  and also let the angular velocity of the centre of mass 

of a body relative to the still semi-space equals zero. 

 
Figure 1. Schematic illustration of the mechanics of a viscoelastic contact between a spherical solid body and a semi-

space at impact. 

 

Also, on the other hand, since the angular velocity of the body relative to the centre of mass of the body equals    

ωzi , consequently, it is obvious that  all points of surface of  a body in the  plane XAY have the relative   circular 

velocity ωzi × R  and since the point A is  the  instantaneous centre  of rolling velocities in the plane XAY (the 

centre of rolling velocities always is placed   in the point A), therefore, it is obvious, that in the initial of moment 

of the time of contact t=0 the body starts to roll in surface of semi-space in the plane XAY with the initial velocity 

of rolling ẏφ(t=0)= ωzi × R.  Also, in the Figure 1.  are designated: n̄ is the normal to the surface; V0x = V0 sinα, V0y 

= V0 cosα    are respectively the normal and tangential velocities of the centre of mass of a body right  before  to 

the beginning of an impact; 𝑀 = 𝐹𝜏 𝑙is  the rotational moment and  where l = R  is the  radius   of    the   body and 

therefore it can be  taken as  the shoulder of  tangential force; ω is the  angular velocity; 𝜀 = 𝜑 ̈ is the angular 

acceleration of a body around the centre of mass of a body and where  φ  is the angular  rotation of a body around 

the centre of mass of a body. Also, it is taken here that the reactive tangential viscoelastic force is applied in  the 

point A, and in the initial moment of the time the point of contact A lays in the point 0 of the beginning of the 

coordinates. 

The illustration of the displacement of a body in the surface of semi-space in the current moment of the time of 

impact  is depicted as well in the Figure 2., where: 𝑥  is the distance of the mutual approach or the total deformation 

of compression between surfaces of the colliding bodies, and as well, in the same of instant of  the time, it is the 

displacement    of  centre of mass of a body on the  axis  coordinate X ; Vd is the volume of deformations, which 

is forming in the course of contact.   
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Figure 2. The illustraion of the displacement of a body in the surface of semi-space in the current moment of the time of 

impact 

 

It is obvious that the viscoelastic forces Fn and Fτ are acting in the contact area between the surfaces of contact 

and according to Newton’s Second Law we can write the next differential equations of motion: 

 

                                                                            𝑚𝑥̈ = −𝐹𝑛,                                                                                              (1) 

 

                                                                            𝑚𝑦̈ = −𝐹𝜏,                                                                                          (2) 

 

where m is the effective mass or reduced mass, which in this case is equal to the mass of the spherical body; ӱ, 𝑥̈ 

are the accelerations of the centre of mass of a body. 

 On the other hand, since the rotational moment of M and the angular acceleration 𝜀 = 𝜑̈ act in the direction of   

rotation of spherical body, and therefore they are taken positive, or in others words, the rotational moment of force 

of friction is positive as its direction coincides with the direction of positive counting of angle of rotation φ, and 

thus,  the equation for the rotational motion can be written as 

 

                                                                         𝐽𝑧𝜑̈ = 𝑀 = 𝑅𝐹𝜏,                                                                                        (3) 

 

where Jz  is the effective moment of inertia which in this case is equal to the moment of inertia  of the spherical 

body. 

*Remark: The equation (3) is totally correct, like it is usually taken, for example in [ 53], [54], [55] and in many 

others books.  Moreover, for example, it was taken  in the work [56] that angular momentum 𝑃𝜔 = 𝐽𝑧𝑑𝜔 = 𝑅𝐹𝜏𝑑𝑡, 

but since the rotational moment  𝑀 = 𝑃𝜔/𝑑𝑡,  we get the same result as in Eq. (3), namely   𝐽𝑧𝜑̈ = 𝑅𝐹𝜏.  

Also,  the first problem , which we have to solve  here is the definition of  the normal and the tangential forces.  

There were attempts in the past to use some linear models for solutions of the contact’s problems, for example, 

similar as  in the linear Winkler Foundation Model of an elastic foundation, see for example, Kerr [58], it is  

assumed that the contact  forces   are proportional to the deflection x and y:   𝐹𝑛 = 𝑘𝑥𝑥,  𝐹𝜏 = 𝑘𝑦𝑦,  where  the 
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                                0                                                                B                           Y                                                

                                        x                                     A                                             

                                                                                                                

                                                                                                       Fτ                                       

                                         

  

                                           𝒚 = 𝒚𝒔 + 𝒚𝝋                               Vd  

                                                                               Fn 

                                             

 

                                X 

 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[Goloshchapov * et al., 8(6): June, 2019]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [4] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

coefficients kx  and  ky are called as the modulus of foundation. Or other scholars, see for example [5], [48],  take 

coefficients kx  and  ky  (or stiffnesses),  as the constant magnitudes too. But it is well known that, these models 

give an oversimplified and inadequate description of the local contact interaction between curvilinear surfaces of 

two solid bodies and lead to erroneous conclusions, because they can be used only for linear deformations. The 

main problem is that all viscoelastic forces are not the linear functions relative to displacements x, y and z.  But 

indeed, it is known, see for example Herts [1], Landau and Lifshits [4]; Brilliantov et al. [29], Goloshchapov[49, 

50, 51];  Johnson [27]; Popov [42, 43]; Heβ [44], the parameters (coefficients) kx  and  ky  are the variable  functions 

depending of the displacements (motions) x and  y.  Also, the most basic problem in the finding of solutions for 

equations (1,2,3) is that the dynamic contact between two curvilinear surfaces is a non-equilibrium, a nonlinear 

process of deformations and as well that all mechanical dynamic parameters of viscoelasticity are not the constant 

values. They all are variable magnitudes, because all dynamic mechanical and physical properties of materials 

depend on dynamic conditions of loading (displacements, velocities and a frequencies) and temperature. The 

methods for the finding of viscoelastic parameters and viscoelastic forces, which are using in this paper, you can 

find in the works [49, 50, 51].    

Further, the comparison of Eqs. (2) and (3) gives 

 

                                                                           
1

𝑅
𝐽𝑧𝜑̈ = −𝑚𝑦̈                                                                                           (4) 

 

Since for a spherical body 𝐽𝑧 =
2

5
𝑚𝑅2, we get 

 

                                                                             
2

5
𝑅𝜑̈ = −𝑦̈                                                                                               (5) 

 

Hence, it is obvious that, the common tangential motion (or displacement) y of the centre of mass of a body can 

be found as the sum of two motions: the rolling motion  yφ plus  the   headway (the translational) motion under 

the deformation of direct shear ys, namely 

 

                                                     𝑦 = 𝑦𝜑 + 𝑦𝑠 , 𝑦̇ = 𝑦̇
𝜑

+ 𝑦̇
𝑠
 ,   𝑦̈ = 𝑦̈

𝜑
+ 𝑦̈

𝑠
 ,                                                            (6) 

 

*Remark: It is very important to understand here that at viscoelastic impact, the   headway (the translational) 

motion under the deformation of direct shear  ys is not a slip between contacting surfaces – it is specific 

deformation with the  internal  friction. 

Further, since the  rolling motion 𝑦𝜑 = 𝑅𝜑 ,  it follows 𝑦̇
𝜑

= 𝑅𝜑̇  and  𝑦̈
𝜑

= 𝑅𝜑̈ , we get the equation,  which 

connects the translational rolling acceleration with the total translational acceleration  of body’s centre of mass, 

as 

 

                                                                              𝑦𝜑̈ = −
5

2
𝑦̈                                                                                       (7) 

 

As we can see from this equation that the  common  acceleration of centre of mass of a body 𝑦̈ is not equal to the 

rolling (rotational) acceleration 𝑦̈
𝜑

= 𝑅𝜑̈, and  it is obvious that the  common  displacement of centre of mass of 

a body y  will  not be equal to the  rolling displacement yφ. 

*Remark:  It is necessary to mark as well here that some scholars take the rotational moment negative𝑀 = −𝑅𝐹𝜏, 

see for example [49], [51], [58]. In this case the equation for rotational motion  is written as 𝐽𝑧𝜑̈ = −𝑅𝐹𝜏,  but as 

well in their solutions they take that 𝑦̇𝜑 = −𝑅𝜑̇ , and    as well it  is obvious  that  𝑦̈
𝜑

= −𝑅𝜑̈ , and then, after 

substitutions we get same equation like we already obtained  in the Eq. (7). Thus, it confirms once more that the 

Eq. (7) is totally exact reflects the motion of body under actions of the frictional force and of the rotational moment 

of the force of friction. 

Then, according  to Eqs. (6)  it follows 

 

                                                                                𝑦𝑠̈ =
7

2
𝑦̈,                                                                                                 (8) 

 

                                                                               𝑦𝑠̈ = −
7

5
𝑦̈

𝜑
                                                                                      (9) 
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As we can see, the acceleration the   headway (the translational) motion under the deformation of direct shear is 

stronger than the acceleration of rolling motion. 

The integration of the Eq. (7) gives 𝑦̇ =
2

5
𝑦̇𝜑 + 𝐶 . Further, since according to the initial conditions  t =0,  𝜑̇(0) =

𝜔𝑧𝑖 , 𝑦̇𝜑(0) = 𝑅𝜑̇(0) = 𝑅𝜔𝑧𝑖 ,   𝑦̇𝑠(0) = 𝑉0𝑦    and as well it is obvious that 𝑦̇(0) = 𝑉0𝑦 + 𝑅𝜔𝑧𝑖 , it follows that 

𝐶 = 𝑉0𝑦 +
7

5
𝑅𝜔𝑧𝑖  .  Hence finally, the solution of the Eq. (7) can be written as   

 

                                                                   𝑦̇ = 𝑉0𝑦 −
2

5
𝑦̇𝜑 +

7

5
𝑅𝜔𝑧𝑖,                                                                         (10) 

 or 

                                                                   𝑦̇
𝜑

=
5

2
𝑉0𝑦 −

5

2
𝑦̇ +

7

2
𝑅𝜔𝑧𝑖                                                                        (11) 

 

The initial angular velocity of rotation  ωzi should be taken positive, when it gives the motion in same direction as 

the initial translational velocity V0y, and   it should be taken negative when the rotation goes in the back direction.  

*Remark:  Also, in the paper [48] it was taken  in the initial conditions for the  translative motion that   𝑦̇(0) =
𝑉0𝑦 .    It is incorrect choice, because there it was not taken in account that the circular  motion  in the point A in 

the initial time of contact becomes the translational motion of the centre of mass a body. This is obvious that the 

initial total translational velocity of the centre of mass of a body is   the sum of two velocities, like  it is taken in 

this article above. 

After the integration of the Eqs. (10) and (11) with the initial conditions  t = 0,  y = 0, yφ = 0, ys = 0we get 

respectively 

 

                                                                 𝑦 = 𝑉0𝑦𝑡 −
2

5
𝑦𝜑 +

7

5
𝑅𝜔𝑧𝑖𝑡                                                                         (12)  

  and 

                                                                𝑦𝜑 =
5

2
𝑉0𝑦𝑡 −

5

2
𝑦 +

7

2
𝑅𝜔𝑧𝑖 𝑡,                                                                              (13) 

 

 Now, using  Eqs. (6), we can write the next series of useful equations for the velocities of motions, such as: 

 

                                                                   𝑦̇ =
5

7
𝑉0𝑦 +  

2

7
𝑦̇𝑠 + 𝑅𝜔𝑧𝑖                                                                                (14) 

and 

                                                                   𝑦̇
𝑠

=
7

2
𝑦̇ −

5

2
𝑉0𝑦 −

7

2
𝑅𝜔𝑧𝑖,                                                                                    (15) 

as well 

                                                                   𝑦̇
𝜑

=
5

7
𝑉0𝑦 −

5

7
𝑦̇

𝑠
+ 𝑅𝜔𝑧𝑖                                                                         (16) 

and 

 

                                                                    𝑦̇
𝑠

= 𝑉0𝑦 −
7

5
𝑦̇

𝜑
+

7

5
𝑅𝜔𝑧𝑖  .                                                                  (17) 

 

 And also, we can write the series of useful equations for the motions, respectively as: 

 

                                                                 𝑦 =
5

7
𝑉0𝑦𝑡 +  

2

7
𝑦𝑠 + 𝑅𝜔𝑧𝑖𝑡                                                                             (18) 

 and 

                                                                𝑦𝑠 =
7

2
𝑦 −

5

2
𝑉0𝑦𝑡 −

7

2
𝑅𝜔𝑧𝑖𝑡,                                                                        (19) 

 

 and as well 

                                                                 𝑦𝜑 =
5

7
𝑉0𝑦𝑡 −

5

7
𝑦𝑠 + 𝑅𝜔𝑧𝑖𝑡                                                                            (20) 

and 

 

                                                                  𝑦𝑠 = 𝑉0𝑦𝑡 −
7

5
𝑦𝜑 +

7

5
𝑅𝜔𝑧𝑖𝑡 .                                                                       (21) 
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2. SOLUTION PROBLEMS OF THE NORMAL DISPLACEMENT 
In the papers [49], [ 50] and [51] have been proposed only partial solutions of the equations (1) and (2).    But, on 

the other hand, it is obvious that the general solution can be derived   by using the equations (1-21) above and also 

by using the equations for viscoelastic forces, which have been obtained in the papers [49, 50, 51], by using the 

methods “MSF” and “MDSF”.    

According to [49, 50, 51], the expressions for the normal elastic force Fcn and for the normal viscous force Fbn  

can  be written as follows: 

 

                                                                       𝐹𝑐𝑛 =
4

3
𝐸′𝑅1/2𝑥3/2,                                                                                 (22) 

 

                                                                     𝐹𝑏𝑛 = 4𝑘𝑝
𝐸″

𝜔𝑥
𝑅1/2𝑥̇𝑥1/2,                                                                                      (23) 

 

where  𝐸′is the effective dynamic elasticity module at the compression, 𝐸′′is the   effective viscosity  modulus, 𝜔𝑥 

is   the frequency of damped oscillations   by axis  X.    

*Remark: The dynamic modulus of elasticity is called also as accumulation or  storage modulus, and the dynamic 

modulus of viscosity is called also  as the loss modulus. 

And since 𝐹𝑛 = 𝐹𝑏𝑛 + 𝐹𝑐𝑛 the equation for the general normal viscoelastic forces can be written                    

 

                                                      𝐹𝑛 = 4𝑘𝑝
𝐸″

𝜔𝑥
𝑅1/2𝑥̇𝑥1/2 +

4

3
𝑘𝑝𝐸′𝑅1/2𝑥3/2                                                                    (24) 

 

According  to Eqs. (1)  and    (24)   the differential equation of the movement (displacement) of the centre of mass 

of a body by axis X can be  expressed as  

 

                                                      𝑚𝑥̈ + 4𝑘𝑝
𝐸″

𝜔𝑥
𝑅1/2𝑥̇𝑥1/2 +

4

3
𝑘𝑝𝐸′𝑅1/2𝑥3/2 = 0,                                                          (25)                                                                       

 

or it can be also written in the canonical form as 

 

                                                                      𝑚𝑥̈ + 𝑏𝑥𝑥̇ + 𝑐𝑥𝑥 = 0,                                                                                     (26) 

 

 where the expressions for the variable viscoelasticity parameters can be written as:  

 

                                                                        𝑐𝑥 =
4

3
𝐸′𝑅1/2𝑥1/2,                                                                                       (27) 

 

                                                                         𝑏𝑥 =
4𝐸″𝑅1/2

𝜔𝑥
𝑥1/2.                                                                                    (28) 

 

For practical application of the differential equation (26) with the variable viscoelasticity parameters, we can find 

their approximate solutions in the same manner as for the equations with the equivalent constant viscoelasticity 

parameters, if we choose the equivalent constant parameters Bx, Cx so that the work Axcm and Axbm  with the variable 

viscoelasticity parameters cx, bx will be equal to the work with  the constant viscoelasticity parameters, like it was 

made, using the method of the equivalent works in [49, 50, 51]. Thus, according to the boundary conditions 𝑡 =
𝜏1, 𝑥 = 𝑥𝑚, where 𝜏1 is the period time of the compression,  xm is the maximum magnitude of the compression 

between surfaces of the contacting bodies (also, as we already know, it is the maximum displacement of the centre 

of mass of a body, which is equal to the maximum of mutual approach between bodies, and also using the known 

expressions for work  Axcm and Axbm  , see [49, 50, 51],  we can write next equations:  

 

                                               𝐴𝑥𝑐𝑚 = 𝐶𝑥 ∫ 𝑥
𝑥𝑚

0
𝑑𝑥 =

1

2
𝐶𝑥𝑥𝑚

2 =
8

15
𝑘𝑝𝐸′𝑅1/2𝑥𝑚

5/2
                                                    (29) 

  and 

                                            𝐴𝑥𝑏𝑚 = 𝐵𝑥 ∫ 𝑥̇
𝑥𝑚

0
𝑑𝑥 = 𝐵𝑥

∫ 𝑥𝑑𝑥
𝑥𝑚

0

∫ 𝑑𝑡
𝜏1

0

= 𝐵𝑥
𝑥𝑚

2

2𝜏1
=

8𝑘𝑝𝐸″𝑅
1
2𝑥𝑚

5
2

5𝜔𝑥𝜏1
 .                                           (30) 
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Hence, according to the results obtained in Eqs. (29), (30), we can write the expressions for the equivalent constant 

viscoelasticity parameters, respectively as:    

 

                                                                   𝐶𝑥 =
16

15
𝑘𝑝𝐸′𝑅1/2𝑥𝑚

1/2
,                                                                                   (31) 

 

                                                                    𝐵𝑥 =
16𝐸″𝑘𝑝𝑅1/2

5𝜔𝑥
𝑥𝑚

1/2
  .                                                                                    (32)                                            

 

Thus, the equation (23) with variable parameters can be rewritten as the equations with constant parameters as 

follows 

 

                                                                    𝑚𝑥̈ + 𝐵𝑥𝑥̇ + 𝐶𝑥𝑥 = 0                                                                              (33)   

   

The equation (33) is the equation of damped oscillations and the solution to this equation with the initial condition 

t = 0, 𝑥̇ = 𝑉0𝑥, is known as 

 

                                                                   𝑥 =
𝑉𝑥

𝜔𝑥
𝑒−𝛿𝑥𝑡 𝑠𝑖𝑛( 𝜔𝑥𝑡)                                                                            (34) 

and 

                                                   𝑥̇ =
𝑉0𝑥

𝜔𝑥
𝑒−𝛿𝑥𝑡[𝜔𝑥 𝑐𝑜𝑠( 𝜔𝑥𝑡) − 𝛿𝑥 𝑠𝑖𝑛( 𝜔𝑥𝑡)]                                                             (35) 

 

Where: 𝜔𝑥 = √𝜔0𝑥
2 − 𝛿𝑥

2; 𝛿𝑥 =
𝐵𝑥

2𝑚
 is the normal damping factor;  𝜔0𝑥 = √

𝐶𝑥

𝑚
  is the angular frequency of free 

harmonic oscillations by axis X. 

Obviously, the period time of the compression 𝜏1 can be find from the conditions 𝑥̇ = 0 and  𝑡 = 𝜏1 as  

 

                                                                   𝜏1 =
1

𝜔𝑥
𝑎𝑟𝑐𝑡𝑎𝑛(𝜔𝑥/𝛿𝑥)                                                                           (36)   

 

Also, the expression for the maximum magnitude of the compression between a body and a semi-space   has been 

derived in papers   [49, 50, 51], as  

 

                                                                    𝑥𝑚 = [
15𝑚𝑉0𝑥

2

16𝑘𝑝𝐸′𝑅1/2 𝑘𝑥]
2/5

,                                                                              (37) 

 

where  kx is the restitution coefficient.  

In the case of totally elastic impact, when kx = 1 and kp = 1  we get the same result, as it has been obtained by  

L. Landau [4] according to the Hertz theory [1] for the absolutely elastic contact.  

Also other equations, which are using   in this article, have been obtained   in [49, 50, 51], such as:  

 

                                                                                𝑘𝑥 =
𝜏1

𝜏2
,                                                                                  (38) 

 

where 𝜏2 is the period of the time of restitution  

 

                                                                          𝑘𝑥 =
(𝜋−3𝑡𝑔𝛽𝐸)

(𝜋+3𝑡𝑔𝛽𝐸)
                                                                                  (39) 

and as well 

 

                                                                       𝑡𝑔𝛽𝐸 =
𝜋

3
×

(1−𝑘𝑥)

(1+𝑘𝑥)
 ,                                                                             (39′) 

 

 

                                                                   𝑡𝑔𝛽𝐸 =
𝐸″

𝐸′
=

𝐸1
″ 𝐸2

″(𝐸1
′ +𝐸2

′ )

𝐸1
′ 𝐸2

′ (𝐸1
″+𝐸2

″)
,                                                                           (40) 
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 where 𝛽𝐸  is the effective angle of mechanical losses for the normal displacement, see [51]. 

Finally, from Eqs. (37) and (39) it follows that  

 

                                                              𝑥𝑚 = [
15𝑚𝑉𝑥

2

16𝑘𝑝𝐸′𝑅1/2 ×
(𝜋−3𝑡𝑔𝛽𝐸)

(𝜋+3𝑡𝑔𝛽𝐸)
]

2/5

                                                                  (41) 

 

Also, using Eq. (35)  with  the boundary conditions  𝑡 = 𝜏𝑥, 𝑉𝑡𝑥 = 𝑥̇(𝜏𝑥), (𝑉𝑡𝑥  is the normal velocity   of   centre 

of mass of  a  body in the instant of  rebound), the duration of the time of impact 𝜏𝑥 = 𝜏1 + 𝜏2, can be found, as  

 

                                                                             𝜏𝑥 = −
𝑙𝑛 𝑘𝑥

𝛿𝑥
,                                                                                        (42)   

 

 where 

 

                                               𝛿𝑥 =
𝐵𝑥

2𝑚
=

8𝑘𝑝𝐸″𝑅1/2

5𝑚𝜔𝑥
𝑥𝑚

1/2
=

8𝑘𝑝𝐸′𝑡𝑔𝛽𝐸

5𝜋𝑚
𝜏𝑥𝑅1/2𝑥𝑚

1/2
                                                   (43)     

 

and finally by  using Eq. (37), (39) and (41), (43) ,  see as well [51],  we get  

 

                                                     𝜏𝑥
2 = −

2(1+𝑘𝑥) 𝑙𝑛 𝑘𝑥

𝑉0𝑥
2/5

(1−𝑘𝑥)𝑘𝑥
1/5 × (

5𝑚

8𝑘𝑝𝐸′𝑅1/2)
4/5

                                                                 (44) 

 

 

3. SOLUTION PROBLEMS OF THE TANGENTIAL DISPLACEMENT 
The expressions for the tangential elastic force Fcs and for the tangential viscous force Fbs for   the   headway (the 

translational) motion under the deformation of direct shear ys already have been obtained by using the methods 

“MSF” and “MDSF”, see [49, 50, 51], can be  expressed as follows   

 

                                                                            𝐹𝑐𝑠 = 𝐺 ′𝑃𝑥𝑦𝑠                                                                                           (45) 

and 

                                                                           𝐹𝑏𝑠 =
𝐺″

𝜔𝑦
𝑃𝑥𝑦̇

𝑠
,                                                                                      (46) 

 

where  𝑃𝑥 = 𝑘ℎ𝑥 + 2𝑘𝑝𝑅1/2𝑥1/2, 𝐺 ′is the effective dynamic elasticity module at the shear, 𝐺′′is the  effective  

viscosity  modulus at shear and where 𝑘ℎ  isthe coefficient of the depth of the contact surface, 𝜔𝑦  is the frequency 

of damped oscillations  by  axis  Y.  

On the other hand,  as  it is  known [51], [53], [54], [58] that,  in the case of rolling between the contacting surfaces,  

the  instantaneous centre  of rolling velocities always is placed in the plane XAY  in the point A ,  see Figure 2. 

Therefore, it is obvious, that the velocity of rolling  motion  in the point A always equals zero, 𝑦̇𝜑𝐴 = 0 , but the 

velocity in any point of the surface of contact 𝑦̇𝜑𝑖 =  𝑦̇𝑟𝑖  is not equal zero,  we can write for the angular velocity 

of the relative rotation between the colliding bodies, see  Fig. 2., that  

 

                                                                          𝜔 =
𝑦̇𝑟𝑖

(𝑥−𝑥𝑖)
=

𝑦 ̇𝜑

𝑅
,                                                                                 (46′) 

 

where 𝑥𝑖 is coordinate of  any point  on  the surface of contact and as well, in the same time,  it is  the indentation 

of any point of the body into a semi-space, 𝑦̇𝑟𝑖is the velocity of the tangential deformation of the rolling shear in 

any point of the surface of contact. 

On the other hand, since, it is obvious that for all points of the surface of contact, including the point B in the 

plane Z0X, 𝑥𝑖 = 0, see Fig. 2., the velocity of the tangential deformation of the rolling shear can be found as   

 

                                                                              𝑦̇𝑟 =
𝑥

𝑅
𝑦̇𝜑                                                                                       (47) 
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We can rewrite the equation (47) as  𝑑𝑦𝑟 =
𝑥

𝑅
𝑑𝑦𝜑,  but since 𝑦𝜑 and 𝑥 are linearly independent, the tangential 

deformation at shear in the case of rolling contact can be expressed as    

 

                                                                              𝑦𝑟 =
𝑥

𝑅
𝑦𝜑                                                                                             (48) 

 

Now, according to Eqs. (47), (48), the expressions for the tangential elastic force Fcr and for the tangential viscous 

force Fbr for the   motion of the rolling shear yφ, can be expressed as   

 

                                                                          𝐹𝑐𝑟 =
𝑥

𝑅
𝐺 ′𝑃𝑥𝑦𝜑 ,                                                                                      (49) 

 

                                                                          𝐹𝑏𝑟 =
𝐺″

𝜔𝑦

𝑥

𝑅
𝑃𝑥𝑦̇

𝜑
                                                                                           (50) 

 

Since the general tangential force can be expressed as sum 𝐹𝜏 =  𝐹𝑐𝑠 + 𝐹𝑏𝑠 + 𝐹𝑐𝑟 +  𝐹𝑏𝑟  , we get 

 

                                                𝐹𝜏 = 𝐺 ′𝑃𝑥𝑦𝑠 + 
𝐺″

𝜔𝑦
𝑃𝑥𝑦̇

𝑠
  +  

𝑥

𝑅
𝐺 ′𝑃𝑥𝑦𝜑  +  

𝐺″

𝜔𝑦

𝑥

𝑅
𝑃𝑥𝑦̇

𝜑
                                                 (51)     

 

Now substituting yφ and ẏφ from Eqs (16) and (20) into Eq (51) and then after simple algebraic actions, we obtain 

 

                                                      Fτ = 𝐺 ′𝑞𝑥𝑦𝑠 + 
𝐺″

𝜔𝑦
𝑞𝑥𝑦̇

𝑠
  +  𝑢𝑥(𝐺 ′𝑡 +

𝐺″

𝜔𝑦
) ,                                                                     (52) 

 

where  𝑞𝑥 = 𝑃𝑥 (1 −
5𝑥

7𝑅
),    𝑢𝑥 = 𝑃𝑥

𝑥

𝑅
(

5

7
𝑉0𝑦 +  𝑅𝜔𝑧𝑖). Taking in account Eqs (2), (8) and (52) we get the next 

differential equation  

 

                                                𝑚𝑦̈
𝑠

+
7𝐺″

2𝜔𝑦
𝑞𝑥𝑦̇

𝑠
 +  

7

2
𝐺 ′𝑞𝑥𝑦𝑠 = −𝑢𝑥

7

2
(𝐺 ′𝑡 +

𝐺″

𝜔𝑦
)                                                          (53) 

 

 

As we can see, this equation is the non-homogeneous differential equation of second order with variable 

coefficients, depending of the normal displacement x and the time t. 

For practical application of the differential equation (53) with the variable viscoelasticity coefficients, we can find 

their approximate solutions in the same manner as for the equations with the equivalent constant viscoelasticity 

coefficients (parameters).  We can lead the equation (53) to the equation with the constant viscoelasticity 

parameters as   

 

                                                               𝑚𝑦̈
𝑠
+𝐵𝑠𝑦̇

𝑠
 +  𝐶𝑠𝑦𝑠 =  −𝑓𝑠(𝑡),                                                                      (54) 

 

where𝑓𝑠(𝑡) is the perturbing force.  

The constant parameters By, Cy can be found again by using   the method equivalent works [49, 50, 51],   by 

finding  the  works  Aycm and  Aybm   with the variable viscoelasticity parameters   equal to the works with constant 

parameters. Since, according to   the boundary conditions 𝑡 = 𝜏1, 𝑥 = 𝑥𝑚, ys = ysm  and qx = qxm , ux = uuxm,  we  

can write that   

 

                                                            𝐴𝑦𝑐𝑚 = 𝐶𝑠 ∫ 𝑦𝑠𝑑𝑦𝑠 =
𝑦𝑠𝑚

0

1

2
𝐶𝑠𝑦𝑠𝑚

2 ,                                                                   (55)   

 

on the other hand 

 

                                                      𝐴𝑦𝑐𝑚 =
7

2
𝐺 ′ ∫ 𝑞𝑥𝑦𝑠𝑑𝑦𝑠 =

𝑦𝑠𝑚

0

7

4
𝐺′𝑞𝑥𝑚𝑦𝑠𝑚

2 ,                                                              (56)          

 

 hence, it follows that   
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                                                                          𝐶𝑠 =
7

2
𝐺 ′𝑞𝑥𝑚,                                                                                       (57) 

 

where  𝑞𝑥𝑚 = 𝑃𝑥𝑚 (1 −
5𝑥𝑚

7𝑅
)and where 𝑃𝑥𝑚 = (𝑘ℎ𝑥𝑚 + 2𝑘𝑝𝑅

1

2𝑥𝑚

1

2 ) , and also we can write  

 

                                              𝐴𝑦𝑏𝑚 = 𝐵𝑠 ∫ 𝑦̇𝑠𝑑𝑦𝑠  =
𝑦𝑠𝑚

0
𝐵𝑠

∫ ∫ 𝑑𝑦𝑠𝑑𝑦𝑠
𝑦𝑠𝑚

0

∫ 𝑑𝑡
𝜏1

0

= 𝐵𝑠
𝑦𝑠𝑚

2

2𝜏1
                                                       (58)    

and  

 

                                                    𝐴𝑦𝑏𝑚 =
7𝐺″

2𝜔𝑦
∫ 𝑞𝑥𝑦̇

𝑠
𝑑𝑦 =  

7𝐺″

2𝜔𝑦
𝑞𝑥𝑚

𝑦𝑠𝑚
2

2𝜏1

𝑦𝑠𝑚

0
,                                                                (59)  

 

and as well it follows that   

                                                              

                                                                         𝐵𝑠 =
7𝐺″

2𝜔𝑦
𝑞𝑥𝑚                                                                                      (60) 

 

Since the function 𝑓𝑠(𝑡) = 𝑢𝑥
7

2
(𝐺 ′𝑡 +

𝐺″

𝜔𝑦
) = 𝑃𝑥

7𝑥

2𝑅
(

5

7
𝑉0𝑦 +  𝑅𝜔𝑧𝑖) (𝐺 ′𝑡 +

𝐺″

𝜔𝑦
) in the initial time   t=0 , x =0, ys =0 

and at the time of  the end of impact  t = τx  equals zero, because the  functions 𝑃𝑥 = 𝑘ℎ𝑥 + 2𝑘𝑝𝑅1/2𝑥1/2 =

𝑘ℎ
𝑉𝑥

𝜔𝑥
𝑒−𝛿𝑥𝑡 𝑠𝑖𝑛( 𝜔𝑥𝑡)  + 2𝑘𝑝𝑅1/2 (

𝑉𝑥

𝜔𝑥
𝑒−𝛿𝑥𝑡 𝑠𝑖𝑛( 𝜔𝑥𝑡))

1

2
  and  𝑥 =

𝑉𝑥

𝜔𝑥
𝑒−𝛿𝑥𝑡 𝑠𝑖𝑛( 𝜔𝑥𝑡) in the initial time   t=0 ,  

x =0, ys = 0 and at the time of  the end of impact t = τx equal zero as well, and also according to the boundary  

value problem  𝑡 = 𝜏1, 𝑥 = 𝑥𝑚,  ys = ysm , ux = uxm, we can  take the approximating function of the perturbing 

force as   𝑓𝑠(𝑡) = 𝐹𝑠sin(𝜔𝑥𝑡), which obviously should  satisfy these boundary value problems. Now, the constant  

force Fs can be found   by using again the method of the equivalent works.  It is obvious, we can take that 

 

                                                ∫ 𝐹𝑠sin(𝜔𝑥𝑡)
𝑦𝑠𝑚

0
𝑑𝑦𝑠 = ∫ 𝑢𝑥

7

2
(𝐺 ′𝑡 +

𝐺″

𝜔𝑦
)𝑑𝑦𝑠

𝑦𝑠𝑚

0
,                                                (61) 

 

Thus, after the integration of Eq. (61), we get 

 

                                                            𝐹𝑠 = 𝑢𝑥𝑚
7

2 sin(𝜔𝑥𝜏1 )
(𝐺 ′𝜏1 +

𝐺″

𝜔𝑦
),                                                                          (62) 

 

where  𝑢𝑥𝑚 = 𝑃𝑥𝑚
𝑥𝑚

𝑅
(

5

7
𝑉0𝑦 + 𝑅𝜔𝑧𝑖).                                   

Thus, the equation (54) can be written as   the simple equation with constant coefficients, as follows                                                  

 

                                                          𝑚𝑦̈
𝑠
+𝐵𝑠𝑦̇

𝑠
 +  𝐶𝑠𝑦𝑠 =  − 𝐹𝑠sin (𝜔𝑥𝑡)                                                                       (63) 

 

The solution of the Eq (63) can be found as sum  ys = ys1 +ys2, where the solution for  ys1is known as  

 

                                                     𝑦𝑠1 = 𝑒−𝛿𝑠𝑡(𝐶1 cos(𝜔𝑠𝑡) + 𝐶2𝑠𝑖𝑛( 𝜔𝑠𝑡)),                                                             (64) 

 

where: 𝜔𝑠 = 𝜔𝑦 = √𝜔0𝑠
2 − 𝛿𝑠

2;  𝛿𝑠 =
𝐵𝑠

2𝑚
is the tangential damping factor;  𝜔0𝑠 = √

𝐶𝑠

𝑚
   is the angular frequency 

of the harmonic oscillations  by axis Y.  

The solution for 𝑓𝑠(𝑡) = 𝐹𝑠sin(𝜔𝑥𝑡), can be obtained by the method of undetermined coefficients as: 

 

                                                             𝑦𝑠2 = 𝐴𝑐𝑜𝑠(𝜔𝑥𝑡) + 𝐵 𝑠𝑖𝑛( 𝜔𝑥𝑡),                                                                      (65) 

 

where, taking in account that 𝛿𝑠 =
𝐵𝑠

2𝑚
  and 𝜔0𝑠

2 =
𝐶𝑠

𝑚
  , the coefficients A and B  have been found respectively as:  
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                                                                 𝐴 =
2𝐹𝑠𝛿𝑠𝜔𝑥

𝑚[(𝜔0𝑠
2 −𝜔𝑥

2)
2

+4𝛿𝑠 
2 𝜔𝑥

2]
,                                                                                (66) 

 

                                                                 𝐵 = −
𝐹𝑠(𝜔0𝑠

2 −𝜔𝑥
2)

𝑚[(𝜔0𝑠
2 −𝜔𝑥

2)
2

+4𝛿𝑠 
2 𝜔𝑥

2] 
                                                                                (67) 

 

Thus, we get the general solution in the next view: 

 

                               𝑦𝑠 = 𝑒−𝛿𝑠𝑡(𝐶1 cos(𝜔𝑠𝑡) + 𝐶2𝑠𝑖𝑛( 𝜔𝑠𝑡)) + 𝐴𝑐𝑜𝑠(𝜔𝑥𝑡) + 𝐵 𝑠𝑖𝑛( 𝜔𝑥𝑡)                                      (68)                                                                                                 

 

Further, according with initial conditions t = 0, 𝑦(0) = 0, 𝑦𝑠(0) = 0 we get  the constant of integration  𝐶1 = −𝐴 

and since  𝑦̇𝑠(0) = 𝑉0𝑦, it follows that the constant of integration  

𝐶2 = 𝐶 =
𝑉0𝑦−𝐴𝛿𝑠−𝐵𝜔𝑥

𝜔𝑠
 , and respectively we get 

 

                               𝑦𝑠 = 𝐶𝑒−𝛿𝑠𝑡 𝑠𝑖𝑛( 𝜔𝑠𝑡) + 𝐴[cos(𝜔𝑥𝑡) −𝑒−𝛿𝑠𝑡𝑐𝑜𝑠(𝜔𝑠𝑡)] + 𝐵 𝑠𝑖𝑛( 𝜔𝑥𝑡)                                      (69)                                                                                                 

 

and then as well after the differentiation it follows that 

 

𝑦̇𝑠 = 𝐶𝑒−𝛿𝑠𝑡 [𝜔𝑠cos (𝜔𝑠 𝑡) − 𝛿𝑠𝑠𝑖𝑛( 𝜔𝑠𝑡)] + 

                              +𝐴{𝑒−𝛿𝑠𝑡[𝜔𝑠sin(𝜔𝑥𝑡) +𝛿𝑠𝑐𝑜𝑠(𝜔𝑠𝑡)] − 𝜔𝑥𝑠𝑖𝑛( 𝜔𝑥𝑡)} + 𝐵𝜔𝑥𝑐𝑜𝑠(𝜔𝑥𝑡)                                         (70)  

 

Finally, by using Eqs (18), (14), we get  

 

                                                      𝑦 =
5

7
𝑉0𝑦𝑡 + 𝑅𝜔𝑧𝑖𝑡 + 

                             +
2

7
{𝐶𝑒−𝛿𝑠𝑡 𝑠𝑖𝑛( 𝜔𝑠𝑡) + 𝐴[cos(𝜔𝑥𝑡) −𝑒−𝛿𝑠𝑡𝑐𝑜𝑠(𝜔𝑠𝑡)] + 𝐵 𝑠𝑖𝑛( 𝜔𝑥𝑡)}                                       (71) 

and  

 

𝑦̇ =
5

7
𝑉0𝑦 + 𝑅𝜔𝑧𝑖 + 

2

7
{𝐶𝑒−𝛿𝑠𝑡 [𝜔𝑠cos (𝜔𝑠 𝑡) − 𝛿𝑠𝑠𝑖𝑛( 𝜔𝑠𝑡)] + 

                             +𝐴{𝑒−𝛿𝑠𝑡[𝜔𝑠sin(𝜔𝑥𝑡) +𝛿𝑠𝑐𝑜𝑠(𝜔𝑠𝑡)] − 𝜔𝑥𝑠𝑖𝑛( 𝜔𝑥𝑡)} + 𝐵𝜔𝑥𝑐𝑜𝑠(𝜔𝑥𝑡)},                                     (72)                                                     

 

and also by using Eqs (20) and (16), we obtain 

 

𝑦𝜑 =
5

7
𝑉0𝑦𝑡 + 𝑅𝜔𝑧𝑖𝑡 − 

                                   −
5

7
{𝐶𝑒−𝛿𝑠𝑡 𝑠𝑖𝑛( 𝜔𝑠𝑡) + 𝐴[cos(𝜔𝑥𝑡) −𝑒−𝛿𝑠𝑡𝑐𝑜𝑠(𝜔𝑠𝑡)] + 𝐵 𝑠𝑖𝑛( 𝜔𝑥𝑡)},                              (73) 

 

 and 

𝑦̇𝜑 =
5

7
𝑉0𝑦 + 𝑅𝜔𝑧𝑖 − 

5

7
{𝐶𝑒−𝛿𝑠𝑡 [𝜔𝑠cos (𝜔𝑠 𝑡) − 𝛿𝑠𝑠𝑖𝑛( 𝜔𝑠𝑡)] + 

                              +𝐴{𝑒−𝛿𝑠𝑡[𝜔𝑠sin(𝜔𝑥𝑡) +𝛿𝑠𝑐𝑜𝑠(𝜔𝑠𝑡)] − 𝜔𝑥𝑠𝑖𝑛( 𝜔𝑥𝑡)} + 𝐵𝜔𝑥𝑐𝑜𝑠(𝜔𝑥𝑡)}                                     (74) 

 

 

4. BORDER OF APPLICATION OF THE OBTAINED SOLUTIONS 
The obtained   results for viscoelastic displacement at impact   have the borders of application, which can be found 

by  using  the next two equations, such as:   

 

                                                                         𝜔𝑥 = √𝜔0𝑥
2 − 𝛿𝑥

2                                                                                    (75) 

 and 

                                                                         𝜔𝑠 = √𝜔0𝑠
2 − 𝛿𝑠

2,                                                                                 (76) 
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 First of all, since as  𝜔0𝑥
2 =  

𝐶𝑥

𝑚
    and 𝛿𝑥 =

𝐵𝑥

2𝑚
,   follows  𝛿𝑥 =

𝐵𝑥𝜔0𝑥
2

2𝐶𝑥
, then, taking in account Eqs. (31), (32), and 

since 𝑡𝑔𝛽𝐸 =
𝐸″

𝐸′
, as well it follows that 𝛿𝑥 =

3𝜔0𝑥
2

2𝜔𝑥
𝑡𝑔𝛽𝐸  . After substituting this ratio into Eq. (75) we get the next 

algebraic equation 

 

                                                              𝜔𝑥
4 − 𝜔0𝑥

2 𝜔𝑥
2 +

9

4
𝜔0𝑥

4 𝑡𝑔2𝛽𝐸 = 0                                                                      (77) 

 

 This equation has only the one valid solution  

 

                                                               𝜔𝑥
2 =

𝜔0𝑥
2

2
(1 + √1 − 9𝑡𝑔2𝛽𝐸)                                                                       (78) 

 

 

and it has the valid root only when1 − 9𝑡𝑔2𝛽𝐸 ≥ 0, therefore for the compression we get 

 

                                                                          𝑡𝑔𝛽𝐸 =
𝐸″

𝐸′
≤

1

3
                                                                                  (79) 

 

 and according to Eq. (39′) we get for a viscoelastic contact that 

 

                                                                               𝑘𝑥 ≥
𝜋−1

𝜋+1
                                                                                           (80)                                                                                                                    

 

It is obvious that, when    𝑘𝑥 <
𝜋−1

𝜋+1
  the plastic deformations will begin to act   in the zone of the contact. 

 

On the other hand, since  𝛿𝑠 =
𝐵𝑠

2𝑚
 , 𝜔0𝑠

2 =
𝐶𝑠

𝑚
  and 𝑡𝑔𝛽𝐺 =

𝐺″

𝐺′
, taking in account Eqs. (57) and (60), it follows 

 𝛿𝑠 =
𝜔0𝑠

2

2𝜔𝑠
𝑡𝑔𝛽𝐺,   and respectively  we get the next algebraic equation 

 

                                                             𝜔𝑠
4 − 𝜔0𝑠

2 𝜔𝑠
2 +

1

4
𝜔0𝑠

4 𝑡𝑔2𝛽𝐺 = 0                                                                   (81) 

 

 This equation has only one valid solution  

 

                                                                 𝜔𝑠
2 =

𝜔0𝑠
2

2
(1 + √1 − 𝑡𝑔2𝛽𝐺)                                                                      (82) 

 

and it has the valid root only when1 − 𝑡𝑔2𝛽𝐺 ≥ 0, therefore for the rolling shear we get 

 

                                                                              𝑡𝑔𝛽𝐺 =
𝐺″

𝐺′
≤ 1 .                                                                             (83) 

 

 

5. EXAMPLE AND CONCLUSION 
Let us consider, for example, the collision between the steel ball, having the radius R =10 mm, and a high-elastic 

semi-space of elastomer.  Also let the velocities of centre of mass of the ball are:  𝑉0𝑥 = 1.0 (
𝑚

𝑐
) ;  𝑉0𝑦 =

1.0 (
𝑚

𝑐
);  𝜔𝑧𝑖 = 0 .  Also, we can take 𝑘𝑝 = √2,   𝑘ℎ = 1 .  The Poisson’s coefficient for elastomer can be taken  

𝜈 = 0.5 , and let the tangent of mechanical losses 𝑡𝑔𝛽𝐺 = 𝑡𝑔𝛽𝐸 = 0.2.  and 𝐸′ = 2 × 10−6 (Pa). Since the density  

of steel ρ = 7.8 ×103 ( kg/m3 ),   the mass of ball has been found  as 𝑚 =
4

3
𝜋𝑅3𝜌 = 32.67 × 10−3( kg).  Then, 

after calculations, using equations (39) and (41) we got for the restitution coefficient 𝑘𝑥 = 0.68 and for the 

maximum magnitude of   compression (indentation) we got respectively 𝑥𝑚 = 1.4 (𝑚𝑚).  Also, since 𝜔0𝑥 =

√
𝐶𝑥

𝑚
  and 𝜔0𝑠 = √

𝐶𝑠

𝑚
 , 𝑞𝑥𝑚 = 𝑃𝑥𝑚 (1 −

5𝑥𝑚

7𝑅
), using Eqs. (31), (57) and (75), (76) we got 𝜔𝑥 = 563.6 , (

𝑅𝑎𝑑

𝑠
)  and 
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𝜔𝑠 = 881  (
𝑅𝑎𝑑

𝑠
).  Then,     the time of the maximum indentation (compression) has been  calculated as 𝜏𝑥 =

𝜋

𝜔𝑥
=

5.855 (𝑚𝑠). Then further, since 𝛿𝑥 =
𝐵𝑥

2𝑚
  and 𝛿𝑠 =

𝐵𝑠

2𝑚
, and as well, since 𝑢𝑥𝑚 = 𝑃𝑥𝑚

𝑥𝑚

𝑅
(

5

7
𝑉0𝑦 + 𝑅𝜔𝑧𝑖),  𝐶 =

𝑉0𝑦−𝐴𝛿𝑠−𝐵𝜔𝑥

𝜔𝑠
 , using Eqs. (62), (66), (69) (71) and (73) the graphs of motion of centre of mass of the ball have been 

built as it is represented in the Figure 3.     

 

 

 
 

Figure 3. The graphs of motion of the centre of mass of the ball 

 

 

The  displacements  for  some specific points of  the time at  impact  have been calculated  and are given here 

below: 

 For the moment of the time t = π/4ωs = 0.89 (ms) respectively ys= 0.674(mm); yφ= 0.154 (mm); y = 0.828 

(mm). 

 For the moment of the time t =π/2ωs = 1.763 (ms) respectively ys = 0.72(mm); yφ = 1.063 (mm); y = 

1.183 (mm). 

                     Y, mm    
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 For the moment of the time t =τ1 = 2.37 (ms) respectively ys= 0.351(mm); yφ= 1.44 (mm); y = 1.791 

(mm). 

 For the moment of the time t =τs = 3.566 (ms) respectively ys = -0.792 (mm); yφ= 3.12 (mm); y = 3.041 

(mm). 

 For the moment of the time t =τx = 5.86 (ms) respectively ys = - 0.95 (mm); yφ = 4.864 (mm); y = 3.914 

(mm). 

In conclusion, first of all, let us mark here, that the obtained equations for displacement (motion) of the centre of 

mass of a body at impact can be useful for finding all displacements and velocities during all the time of moving 

and in   the instant of rebound t = τx.   The obtained results, for example, can be used in the design of wear-resistant 

elements and coverings for components of machines and equipment, which are working in harsh conditions where 

they are subjected to the action of flow or jet rigid particles. Also, this article can be useful to help the 

determination of contact stresses, durability and   fatigue life for   wide spectrum of tasks relevant to collisions 

between solid bodies under different loading conditions. Opportunities exist to use this theory practically, for 

example, in the design and development of new advanced materials, wear-resistant elastic coatings and elements 

for pneumatic and hydraulic systems, stop valves, fans, centrifugal pumps, injectors, valves, gate valves and in 

other installations. 
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